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Introduction
Many cohort studies of the long-term 
effects of fine particulate matter (PM2.5) 
air pollution on health have used exposure 
prediction models to estimate individual-
level long-term concentrations at cohort 
residences (e.g., Beelen et al. 2014; Eeftens 
et al. 2012; Paciorek et al. 2009; Puett et al. 
2009; Sampson et  al. 2013; Young et  al. 
2014). These exposure prediction models rely 
on PM2.5 monitoring data collected from 
spatially distributed monitoring networks. 
PM2.5 predictions are generally infeasible for 
times before comprehensive spatial moni-
toring began (in the late 1990s or 2000s, 
depending on the country). However, many 
cohorts were enrolled before these exten-
sive monitoring networks began operating. 
Therefore, many studies use PM2.5 estimates 
based on monitoring data from later time 
periods than cohort follow-up for their health 
analyses (e.g., Beelen et al. 2008; Cesaroni 
et al. 2013; Weichenthal et al. 2014). This 
temporal misalignment of PM2.5 predictions 
with health data could affect study results.

Other studies have developed historical 
prediction models to temporally align exposure 
estimates with health outcomes. These studies 
used back-extrapolation, historically available 
large-size particle data, or physical or chemical 
models complemented by visibility, emission, 
meteorology, and satellite data (Beelen et al. 
2014; Brauer et al. 2012; Hogrefe et al. 2009; 
Hystad et al. 2012; Lall et al. 2004; Molnár 
et al. 2015; Ozkaynak et al. 1985; Paciorek 
et al. 2009; Yanosky et al. 2009). However, 
most of these studies estimated historical 
PM2.5 concentrations in limited areas or for 
relatively short time periods, or for a combi-
nation of the two. Furthermore, the model 
evaluation for the period before extensive 
monitoring was restricted to small data sets or 
was poorly reported.

In the United States, many populations 
of great value for assessment of PM2.5 health 
effects collected data well before 1999, when 
reliable long-term regulatory monitoring data 
for PM2.5 began to be available. We aimed 
to develop a national prediction model to 
estimate annual average concentrations of 

PM2.5 in the continental United States for the 
entire time period from 1980 through 2010. 
We evaluated our historical predictions from 
1980 through 1998 using available external 
validation data sets and investigated residential 
historical predictions using a multicity cohort.

Methods

PM2.5 Data

We obtained daily PM2.5 concentrations from 
the two national PM2.5 monitoring networks: 
the U.S. Environmental Protection Agency 
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Introduction: Recent cohort studies have used exposure prediction models to estimate the 
association between long-term residential concentrations of fine particulate matter (PM2.5) and 
health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before 
extensive spatial monitoring present a challenge to understanding long-term exposure effects. The 
U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 
was established in 1999.

Objectives: We evaluated a novel statistical approach to produce high-quality exposure predictions 
from 1980 through 2010 in the continental United States for epidemiological applications.

Methods: We developed spatio-temporal prediction models using geographic predictors 
and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency 
Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 
1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 
sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather 
Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from 
IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the 
Children’s Health Study (CHS), and the Inhalable Particulate Network (IPN).

Results: In our validation using pre-1999 data, the prediction model performed well across three 
trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84–0.91) with 
lower R2 values in early years. Model performance using CARB dichot and IPN data was worse 
(R2 = 0.00–0.85) most likely because of fewer monitoring sites and inconsistent sampling methods.

Conclusions: Our prediction modeling approach will allow health effects estimation associated 
with long-term exposures to PM2.5 over extended time periods ≤ 30 years.
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(EPA) Federal Reference Method (FRM) 
network and the Interagency Monitoring of 
Protected Visual Environment (IMPROVE) 
network. Whereas FRM sites were located 
mostly in urban areas to monitor population-
level PM2.5 concentrations, IMPROVE sites 
were established to monitor visibility and were 
located mostly in wilderness areas and national 
parks (Hand et al. 2011; U.S. EPA 2004b). 
We downloaded all available data from FRM 
(1999 through 2010) and IMPROVE sites 
(1990 through 2010) from the U.S. EPA 
Air Quality database (U.S. EPA 2014). We 
computed annual averages of PM2.5 for each 
site that met the minimum inclusion criteria 
of at least two-thirds complete data points for 
any year (with exact numbers dependent on 
the sampling schedule) and < 45 consecutive 
missing days of sampling. We used the PM2.5 
data collected from the FRM and IMPROVE 
networks for 1999–2010 for model develop-
ment including temporal trend estimation, 
whereas we reserved the IMPROVE data 
from 1990 through 1998 for model valida-
tion. We categorized all monitoring sites into 
three regions: East, Mountain West, and West 
Coast (Figure 1).

To estimate temporal trends for the 
entire time period from 1980 through 2010, 

including all years without FRM PM2.5 
measurements, we obtained two additional 
sources of data: annual average concentrations 
of PM2.5 sulfate measured in the Clean Air 
Status and Trends Network (CASTNet) from 
1987 through 2010 (U.S. EPA 2015) and 
daily noon-time visual ranges, as a measure 
of visibility, monitored in the Weather 
Bureau Army Navy (WBAN) network from 
1980 through 2010. Because most visibility 
measurements collected by optical instruments 
had a maximum of 16.093 km (10 mi), and 
because the use of these instruments replaced 
taking measurements with the human eye in 
the 1990s (U.S. EPA 2005), we truncated 
all measurements to a maximum distance of 
16.093 km. We computed annual averages of 
visibility after excluding days with heavy fog, 
dust, and precipitation, and after applying 
the same inclusion criteria as those used for 
PM2.5 data.

For model evaluation in years prior to 
1999, we obtained PM2.5 data from three 
different networks in addition to IMPROVE: 
the Southern California Children’s Health 
Study (CHS) for 1988–2001 (Peters et al. 
2004), the California Air Resources Board 
dichotomous sampler monitoring (CARB 
dichot) for 1994–2003 in California 

(Blanchard et al. 2011), and the Inhalable 
Particulate Network (IPN) for 1979–1982 
over the continental United States (Hinton 
et  al. 1985). CHS PM2.5 data collected 
using 2-week samplers were converted to 
FRM-equivalent PM2.5 data for computing 
annual averages (Peters et al. 2004). Likewise, 
for the CARB dichot data, we adopted a 
published conversion equation to estimate 
FRM-equivalent PM2.5 (Blanchard et  al. 
2011). We applied the same inclusion criteria 
to sites in the three model evaluation networks 
to compute annual averages. These criteria 
reduced the number of IPN sites from 102 (for 
1979–1982) to 16 (for 1980–1981), whereas 
the other three networks yielded the same or 
consistent numbers of sites.

Geographic Variables and 
Geocoding
We considered > 800 variables representing 
geographic characteristics including traffic, 
land use, emission, elevation, and vegetation 
index (see Table S1). Computation of these 
variables at each of the PM2.5 monitoring 
sites was implemented in ArcGIS 10.2. For 
land use characteristics, we used data collected 
during different time periods to incorporate 
time-varying spatial features into the model: 

Figure 1. Maps of (A) FRM and IMPROVE sites for 1999–2010 used in model development and trend estimation, (B) CASTNet and WBAN sites used for trend esti-
mation, and (C) IMPROVE sites for 1990–1998, CHS, CARB dichot, and IPN sites used in model evaluation (blue, green, and red symbols represent West, Mountain 
West, and East regions, respectively); Maps generated using locations of regulatory monitoring sites downloaded from the U.S. Environmental Protection Agency 
(EPA) website (http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily) and boundaries in the R package (version 3.2.5; R Project for Statistical 
Computing). CARB dichot, California Air Resources Board dichotomous sampler monitoring; CASTNet, Clean Air Status and Trends Network; CHS, Children’s 
Health Study; FRM, Federal Reference Method; IMPROVE, Interagency Monitoring of Protected Visual Environment; IPN, Inhalable Particulate Network; WBAN, 
Weather Bureau Army Navy.
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land cover data from the 1970s and 1980s 
and satellite land use imagery data generated 
in 2006. Our final list of geographic vari-
ables was pruned to ~300 variables after we 
eliminated the less-informative variables with 
little variability. To illustrate our predic-
tions over time, we geocoded the residential 
addresses of 7,552 participants in the Multi-
Ethnic Study of Atherosclerosis (MESA) 
(Bild et al. 2002) and the associated MESA 
Air project (Kaufman et  al. 2012). These 
participants provided historical residential 
addresses dating back to 1980. In addition, 
we generated the coordinates of 12,501 
points on a 25-km grid across the continental 
United States.

Development of the PM2.5 Model 
for 1980–2010
The PM2.5 model for the period of 1980–2010 
was developed based on the framework of the 
PM2.5 spatio-temporal prediction model in 
MESA Air (Keller et al. 2015; Lindström et al. 
2014; Sampson et al. 2011; Szpiro et al. 2009). 
Briefly, the MESA Air spatio-temporal predic-
tion model analyzed 2-week averages of PM2.5 
as a function of a spatially varying long-term 
mean, spatially varying temporal trends, and 
spatio-temporal residuals. The spatially varying 
temporal trends were composed of spatially 
varying trend coefficients and trend basis func-
tions. The trend basis functions were estimated 
from singular value decomposition of the data 
from sites with long time series (Fuentes et al. 
2006). The spatially varying long-term mean 
and trend coefficients were estimated using 
universal kriging, which integrates geographic 
predictors and spatial smoothing (Banerjee 
et al. 2004). Before regression modeling, we 
used partial least squares (PLS) to reduce the 
dimension of the hundreds of geographic vari-
ables to a limited number of derived predictors 
that were the linear combinations that maxi-
mized their covariance with PM2.5. The spatial 
dependence structure in the kriging model for 
the long-term mean was assumed to be expo-
nential and was parameterized by three compo-
nents: the range, partial sill, and nugget. The 
spatially dependent and temporally indepen-
dent spatio-temporal residuals were modeled 
by using simple kriging. Whereas the MESA 
Air model was based on 2-week averages, in 
this work, we modeled the log(annual average 
PM2.5 concentrations) from 1999 through 
2010. For the trend estimation, we considered 
only sites with > 6 years of monitoring out 
of the 12 possible years. To avoid unneces-
sary complexity in the model, we assumed a 
single temporal trend, no spatial structure for 
the trend coefficient (zero range and partial 
sill), and two PLS predictors. We examined 
alternative modeling choices by including a 
spatial structure for the trend coefficient and 
interaction terms for three regions.

We explored various approaches to esti-
mating the temporal trend before 1999. These 
approaches included backward extrapolation 
of the temporal trend basis function estimated 
from the 1999–2010 FRM PM2.5 data and 
estimation of the temporal trend using other 
sources of data such as emissions, meteoro-
logical variables, visibility, and PM2.5 sulfate; 
all of these other measurements have been 
shown to be associated with PM2.5 in previous 
studies (Hand et al. 2014; Malm et al. 2002; 
Ozkaynak et al. 1985). Ultimately, we selected 
three approaches for in-depth evaluation of 
the historical trend estimation: a) extrapola-
tion of the linear trend estimated on the basis 
of the PM2.5 data in FRM and IMPROVE 
for 1999–2010; b) estimation of the trend 
using the PM2.5 sulfate data in CASTNet for 
1987–2010 and extrapolation for 1980–1986; 
and c) estimation of the trend using the visi-
bility data in WBAN for 1980–2010. We also 
examined alternative approaches, including 
combining two data sources into one temporal 
trend, estimating two temporal trends, and 
replacing the trend with meteorological 
variables as spatio-temporal covariates.

To evaluate our model for 1999–2010, 
we performed 5-fold cross-validation and 
computed the root mean square error (RMSE) 
and MSE-based R-square (R2) statistics for 
the annual averages (Keller et al. 2015). The 
MSE-based R2 was calculated by subtracting 
from 1 the ratio of the MSE to the variance 
of the data. This value evaluates predictions 
compared with observations about the identity 
line. In contrast, traditional regression-
based R2, the squared correlation coefficient, 
compares predictions with observations about 
a regression line, which can result in overes-
timation of prediction ability. We presented 
cross-validation statistics for each year and for 
all 12 years combined for all sites, and for all 
12 years combined within each of the three 
regions. In addition to spatial performance, we 
examined temporal performance by using the 
median of the cross-validation statistics at each 
site for which > 6 years of data were available. 
To aid in assessing bias, we have also provided 
slopes and intercepts from the regression of 

cross-validated predictions on observations 
(see Supplemental Material).

Model Evaluation for the Pre-1999 
Period
We externally validated the model using four 
distinct PM2.5 data sets, all of which were 
sampled before 1999: a) IMPROVE data for 
1990–1998, b) CARB dichot data for 1988–
2001, c) CHS data for 1994–2003, and d) IPN 
data for 1980–1981 (Table 1). We predicted 
annual averages of PM2.5 concentrations at 
monitoring sites in each of the four monitoring 
networks and computed out-of-sample RMSEs 
and MSE-based R2s using these external 
data sources for all years and regions as well 
as by year and region. We also estimated the 
intercepts and slopes of the best-fit lines.

Predictions
We created maps of PM2.5 predictions on a 
25-km grid over the contiguous United States 
for 1980, 1990, 2000, and 2010 to examine 
spatially varying changes of PM2.5 concentra-
tions over time. We also selected the 10 grid 
coordinates with the highest populations in 
each of the three regions and explored the 
trends of the predictions over 31 years.

In addition, we conducted analyses to 
provide information on the degree to which 
exposure estimation based on data from the 
year 2000 reflected concentrations predicted 
by our approach in the earlier period. To 
investigate the sensitivity of individual 
exposure estimates to temporal and spatial 
variation resulting from changes in people’s 
residences over time, we predicted PM2.5 
concentrations at all home addresses from 
1980 through 2000, the year of the baseline 
exam, among members of the MESA/MESA 
Air cohort and computed a 21-year average 
weighted by residence times across historical 
addresses for each participant. These predic-
tions were compared with annual averages 
estimated for the same participants in 2000, 
the year of the baseline exam. We stratified this 
comparison by the 5,086 participants who did 
not move during 1980–2000 (“nonmovers”) 
and the 2,466 people who moved at least once.

Table 1. Summary of PM2.5 monitoring data used for PM2.5 historical model development and validation.

Network Spatial coverage

Regulatory 
monitoring 

network
Number of 

sitesa
Number of 

observationsa
Sampling 
perioda

Annual average 
of PM2.5 (μg/m3) 

Mean ± SD
FRM National (urban) Yes 1,282 9,233 1999–2010 12.03 ± 3.23
IMPROVE National (rural) Yes 178 1,567 1999–2010 5.44 ± 2.94

72 423 1990–1998 6.05 ± 3.75
CASTNet National (rural) Yes 108 1,485 1987–2010 3.15 ± 1.91
IPN National (urban/rural) Yes 16 18 1980–1981 21.31 ± 6.69
CARB dichot California (urban/rural) Yes 33 247 1988–2001 19.35 ± 7.78
CHS Southern California (urban) No 13 120 1994–2003 16.12 ± 8.17

Notes: CARB dichot, California Air Resources Board dichotomous sampler monitoring; CASTNet, Clean Air Status and 
Trends Network; CHS, Children’s Health Study; FRM, Federal Reference Method; IMPROVE, Interagency Monitoring of 
Protected Visual Environment; IPN, Inhalable Particulate Network; PM2.5, fine particulate matter.
aNumber of sites, number of observations, and sampling period for the monitoring sites that meet the minimum inclusion 
criteria for computing representative annual averages.
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Results
The means of PM2.5 annual averages for 
1999–2010 from FRM and IMPROVE were 
12.03 (SD = 3.23) and 5.44 (2.94) μg/m3, 
respectively (Table 1). There were far fewer 
monitoring sites in 1999 than in 2000–2010 
(see Figure S1), and most of the 1999–2010 
sites were located in the East region (Figure 1). 
The annual average concentrations of PM2.5 
decreased over time from 1999 through 
2010, particularly in the East and West 

Coast regions (see Figure S2). Figure 2 shows 
the estimated temporal trends from 1980 
through 2010 using the three trend estimation 
approaches described in “Methods.” Whereas 
the extrapolated trend based on the PM2.5 
data was linear, the trends estimated using 
PM2.5 sulfate and visibility measurements had 
different rates of decrease in different time 
periods with approximate linearity over time.

In the model evaluation for 1999–2010, 
cross-validated R2s for all 12 years combined 

and each single year were high, varying 
between 0.77 and 0.87 across the three trend 
estimation approaches (see Tables S2 and S3). 
Temporally characterized R2s at each site over 
years were lower (0.55–0.58) than spatially 
characterized R2s in each year across sites, 
possibly because of relatively small temporal 
variability for 12 years compared with large 
spatial variability across the United States. The 
cross-validation statistics for the alternative 
modeling approaches in the sensitivity analyses 

Figure 2. Estimated temporal trends based on fine particulate matter (PM2.5) annual averages in FRM and IMPROVE, PM2.5 sulfate annual averages in CASTNet, 
and visibility annual averages in WBAN. Notes: CASTNet, Clean Air Status and Trends Network; FRM, Federal Reference Method; IMPROVE, Interagency 
Monitoring of Protected Visual Environment; WBAN, Weather Bureau Army Navy.
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were consistent with (and no better than) or 
poorer than those of our primary approach 
shown in Table S2 (data not shown).

Figure S3 shows estimated regression and 
variance parameters for the long-term mean, 
the temporal trend coefficient, and spatio-
temporal residuals, and Figure S4 displays 
loadings of geographic variables for each PLS 
predictor. The regression coefficients of the 
two PLS predictors for both the long-term 
mean and the trend coefficient were statistically 
significantly different from 0, reflecting that 
spatial variation in the long-term mean and 
the temporal trend can be explained by the 
geographic variables used to create the PLS 
predictors. Significant range and partial sill 
parameters for the long-term mean indicate 
an additional important contribution of the 
spatial correlation structure to the long-term 
mean. The contribution of the temporal 
trend to the cross-validated predictions was 
smaller than that of the long-term mean 
(see Table S4).

Tables 2 and 3 show the external valida-
tion statistics for the pre-1999 period using 
IMPROVE data and CHS, CARB dichot, 
and IPN data, respectively. Using IMPROVE 
data, the R2 values were consistently high 
for all years and for each year separately 
(0.70–0.91) across the three trend estimation 
approaches (Table 2, Figure 3). The R2 values 
were slightly higher for the model using the 
extrapolated linear trend based on PM2.5 data 
than the model using estimated trends from 
PM2.5 sulfate and visibility data. In addition, 
the earliest years (1990 and 1991) yielded 
lower R2s (0.70–0.85) than the other years 
(0.83–0.93). The East region produced 
higher R2s (0.67–0.88) than the Mountain 
West region. When the model was validated 
using the CHS data, the R2 values were also 
generally high (0.71–0.90) (Table 3; see also 
Figure S5). The CARB dichot data yielded 
high R2s (over 0.5) except for some years, 
whereas the IPN data consistently yielded 
low R2s (Table 3; see also Figures S6 and S7). 
The variability of the predicted PM2.5 annual 
average concentrations tended to be smaller 
than that of the observations, with regres-
sions on observations having slopes < 1 (see 
Tables S5 and S6). Figures S8 and S9 show 
the differences between the maximum and 
minimum predicted PM2.5 annual averages 
across three trend estimation approaches over 
years at IMPROVE sites. Median differences 
were small, and most were < 2 μg/m3. In 
addition, the differences were larger in the 
early years than in recent years, indicating 
increasing prediction uncertainty of trend 
estimation in the early years.

Figure 4 shows that the predicted PM2.5 
concentrations decreased dramatically across 
decennial years from 1980 through 2010, 
with only a few areas remaining consistently 

high in the continental United States over all 
three decades. The decreasing trend was also 
clear over 31 years across the 10 most highly 
populated grid coordinates in each region 
(data not shown). Thirty-one-year, residence-
weighted average PM2.5 predictions for 
MESA Air participants were generally higher 

than the corresponding annual averages at 
their residences in 2000 (Figure 5; see also 
Figure  S10). The two sets of predictions 
showed high correlations with 2000 annual 
averages (0.86–0.89) with slightly lower 
correlation and more attenuated slopes for 
movers than for nonmovers.

Table 2. External validation statistics of the historical PM2.5 models using PM2.5 IMPROVE data for 
1990–1998 by estimated temporal trend, year, and region.

Year/region na

FRM/IMPROVE PM2.5 CASTNet PM2.5 sulfate WBAN visibility

R 2 RMSE (μg/m3) R 2 RMSE (μg/m3) R 2 RMSE (μg/m3)
Allb 72 (423) 0.91 1.14 0.84 1.49 0.86 1.41
1990 30 0.85 1.04 0.78 1.26 0.70 1.48
1991 36 0.83 1.40 0.78 1.56 0.70 1.84
1992 37 0.91 1.19 0.84 1.59 0.85 1.57
1993 45 0.92 1.20 0.83 1.76 0.87 1.53
1994 50 0.92 1.03 0.84 1.45 0.89 1.20
1995 58 0.91 1.15 0.86 1.41 0.86 1.40
1996 56 0.93 0.93 0.88 1.26 0.91 1.10
1997 57 0.93 1.01 0.86 1.42 0.90 1.21
1998 54 0.90 1.28 0.83 1.70 0.87 1.46
Eastb 21 (120) 0.88 1.27 0.67 2.10 0.84 1.45
Mountain Westb 34 (202) 0.25 0.93 0.04 1.06 0.00 1.39
West Coastb 17 (101) 0.69 1.33 0.67 1.37 0.66 1.39

Notes: CASTNet, Clean Air Status and Trends Network; FRM, Federal Reference Method; IMPROVE, Interagency 
Monitoring of Protected Visual Environment; PM2.5, fine particulate matter; RMSE, root mean square error; WBAN, 
Weather Bureau Army Navy.
aNumber of sites (number of observations when different from the number of sites).
bAnnual averages from 1990 through 1998.

Table 3. External validation statistics of the historical PM2.5 models using CHS, CARB dichot, and IPN 
data by estimated temporal trend and year.

Validation data Year na

FRM/IMPROVE PM2.5 CASTNet PM2.5 sulfate WBAN visibility

R 2 RMSE (μg/m3) R 2 RMSE (μg/m3) R 2 RMSE (μg/m3)
CHS Allb 13 (120) 0.76 4.00 0.76 3.98 0.81 3.59

1994 12 0.71 5.19 0.69 5.34 0.80 4.33
1995 12 0.66 5.97 0.63 6.31 0.75 5.17
1996 12 0.77 4.40 0.75 4.56 0.82 3.86
1997 12 0.83 3.12 0.84 3.01 0.88 2.64
1998 12 0.83 2.87 0.87 2.55 0.87 2.54
1999 12 0.73 4.30 0.75 4.13 0.74 4.16
2000 12 0.80 3.43 0.82 3.24 0.82 3.31
2001 12 0.82 3.79 0.85 3.44 0.86 3.27
2002 12 0.81 3.20 0.82 3.12 0.79 3.31
2003 12 0.88 2.39 0.90 2.22 0.89 2.30

CARB dichot Allb 33 (162) 0.55 5.54 0.48 5.98 0.61 5.17
1988 8 0.09 9.70 0.00 10.52 0.15 9.40
1989 12 0.25 9.07 0.10 9.94 0.33 8.55
1990 11 0.68 4.77 0.53 5.74 0.76 4.08
1991 12 0.31 9.24 0.16 10.16 0.43 8.35
1992 14 0.51 5.35 0.40 5.91 0.63 4.68
1993 15 0.54 3.88 0.33 4.67 0.66 3.30
1994 13 0.77 4.08 0.69 4.72 0.84 3.37
1995 12 0.71 3.46 0.63 3.91 0.70 3.54
1996 15 0.52 4.00 0.66 3.37 0.57 3.81
1997 15 0.41 3.19 0.59 2.66 0.45 3.08
1998 16 0.31 4.11 0.37 3.94 0.30 4.14
1999 12 0.85 2.39 0.84 2.50 0.82 2.64
2000 6 0.53 2.41 0.46 2.59 0.41 2.69
2001 3 0.00 9.41 0.00 9.34 0.00 9.19

IPN Allb 16 (18) 0.16 6.15 0.02 6.63 0.00 7.40
1980 6 0.40 5.11 0.27 5.62 0.00 6.96
1981 12 0.11 6.61 0.00 7.09 0.00 7.61

Notes: CARB dichot, California Air Resources Board dichotomous sampler monitoring; CASTNet, Clean Air Status and 
Trends Network; CHS, Children’s Health Study; FRM, Federal Reference Method; IMPROVE, Interagency Monitoring 
of Protected Visual Environment; IPN, Inhalable Particulate Network; PM2.5, fine particulate matter; RMSE, root mean 
square error; WBAN, Weather Bureau Army Navy.
aNumber of sites (number of observations when different from the number of sites).
bAnnual averages for 1994–2003 from CHS, for 1988–2001 from CARB dichot, and for 1980–1981 from IPN.
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Discussion
We developed a 31-year prediction model to 
estimate fine-scale ambient PM2.5 concen-
trations in the continental United States, 
including the time period before 1999, when 
extensive monitoring data became available. 
Key aspects of our approach to historical (pre-
1999) prediction were our consideration of 
various trend estimation approaches and vali-
dation of our model with multiple external 
validation data sets. Although the predic-
tion model performed well for 1999–2010 
as assessed by cross-validation, the pre-1999 
external validation is a more important 

indicator for evaluating historical predic-
tions. We found that the pre-1999 predic-
tions also generally performed well across 
three trend estimation approaches, particu-
larly for the external IMPROVE and CHS 
data. The model performance was better in 
the highly populated East region. Twenty-
one-year average PM2.5 concentrations for 
1980–2000 at MESA/MESA Air participant 
residences tended to be higher than and 
somewhat unsystematically different from 
annual averages in 2000, although the corre-
lation was higher among those with stable 
residence locations.

Developing a prediction model for esti-
mating long-term PM2.5 concentrations for the 
time period for which few PM2.5 monitoring 
data are available required using external infor-
mation to estimate a temporal trend. Our three 
approaches for trend estimation gave consis-
tently good model performance as assessed 
by R2 values, with a slight edge to the linearly 
extrapolated trend for predictions before 1990; 
this may be the case because the three trends we 
considered, although based on three different 
data sources, all showed similarly decreasing 
patterns with only slightly different shapes. We 
considered PM2.5 sulfate data useful for trend 

Figure 3. Scatter plots of observed and predicted fine particulate matter (PM2.5) annual averages from the PM2.5 historical model using the Federal Reference 
Method/Interagency Monitoring of Protected Visual Environment (FRM/IMPROVE) PM2.5 trend across IMPROVE sites for 1990–1998.

Figure 4. Predicted fine particulate matter (PM2.5) annual averages in 1980, 1990, 2000, and 2010 from the 31-year PM2.5 model using the extrapolated temporal 
trend based on PM2.5 data for 1999–2010; Maps generated using model outputs discussed in the “Development of the PM2.5 model for 1980–2010” in “Methods” 
and boundaries for the year 2000 U.S. Census. Source: ArcUSA; U.S. Census; ESRI (Pop2010 fields); and ESRI, derived from Tele Atlas. Maps were created using 
ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved. 
For more information about Esri® software, please visit www.esri.com. 
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estimation because a large reduction of PM2.5 
in the 1990s and early 2000s was likely to be 
the result of a large reduction of sulfate, particu-
larly in the East region (Malm et al. 2002; U.S. 
EPA 2004a). The nonlinear decrease of the 
estimated trend for the PM2.5 sulfate data could 
have been caused by the timing of the imple-
mentation of policies regulating sulfur dioxide 
emissions (Xing et al. 2013). The decreasing 
trend for annual sulfur dioxide emissions 
from power plants matches well with that for 
sulfate concentrations in the eastern half of the 
United States between 1990 and 2003 (U.S. 
EPA 2004a). The CASTNet sites were located 
mostly in rural areas, which may not represent 
PM2.5 concentrations from urban sources or 
population centers. However, because sulfate 
is an important regional pollutant that exhibits 
homogenous concentrations on a large spatial 
scale owing to long-range transport, the rural 
sites allow us to assess large regional trends over 
time, as intended by the CASTNet monitoring 
design. The trend estimated from the visibility 
data had a somewhat different shape from that 
of the PM2.5 sulfate trend, which could possibly 
be driven by meteorological influence (Hand 
et al. 2014). In addition to a nonlinear rela-
tionship between PM2.5 concentrations and 
visibility depending on chemical composition 
and weather conditions, the change of sampling 
methods for visibility (beginning in 1992) from 
the relatively subjective human eye to more 
objective optical instruments (Hyslop 2009; 
U.S. EPA 2005) coincides with the observed 
state of a marked downward trend.

Our historical model was based on 
a spatio-temporal framework using annual 
averages of PM2.5 concentrations for multiple 
years. Other studies in Europe and Canada 
predicted annual averages of nitrogen dioxide 
(NO2), nitrogen oxides (NOX), and PM2.5 
by back-extrapolation (Beelen et al. 2014; 
Chen et al. 2010; Gulliver et al. 2013; Meng 
et al. 2015). The back-extrapolation approach 
computed the difference of spatial averages 
between the two time periods or the ratio 
of a short-term average to an annual average 
based on a few fixed site measurements and 
then added to or multiplied by predictions 
for recent years to obtain estimates for early 
years. In contrast with the back-extrapolation 
approach, our spatio-temporal approach 
allows prediction for an extended time period 
for which there are no measurements.

As other authors have done, we consid-
ered various alternative approaches to 
historical prediction. Most previous studies 
used ratios of PM2.5 to PM10 (particulate 
matter) to leverage PM10 data collected before 
PM2.5 monitoring began, as opposed to our 
approach, which directly used PM2.5 along 
with an estimated temporal trend. Some U.S. 
investigators developed ratio models that 
predicted monthly averages of PM2.5 concen-
trations for 1988–1998 by multiplying the 
ratios by the predicted concentration of PM10 
for Nurses’ Health Study participants residing 
in Northeastern and Midwestern regions 
(Paciorek et al. 2009; Yanosky et al. 2009) 
and expanding the model to the continental 

United States (Yanosky et  al. 2014). In 
Taipei, Taiwan, another study developed a 
ratio model for predicting historical monthly 
averages of PM2.5 (Yu and Wang 2010). In 
separate analyses that aimed to mimic this 
approach, we also applied our model to 
annual average ratios. Our cross-validated 
R2s were high between 1999 and 2010 
(R2 = 0.84–0.90), consistent with those of our 
original model. However, the R2 values for the 
out-of-sample validation using IMPROVE 
data were lower, particularly in early years 
such as 1990 and 1991 (R2 = 0.13 and 0, 
respectively). This poor model performance 
could be attributed to the relatively poor 
prediction performance of PM10 rather than 
PM2.5. A spatio-temporal prediction model 
for PM10 annual averages in the continental 
United States achieved a cross-validated R2 
of 0.55 (Hart et al. 2009), much lower than 
the cross-validated R2 of 0.88 in a spatial 
prediction model for PM2.5 annual averages in 
2000 (Sampson et al. 2013). It is also possible 
that PM10 temporal and spatial patterns vary 
differently from those of PM2.5.

In addition to ratios, we also explored 
modeling approaches that incorporated 
visibility or meteorology to predict historical 
PM2.5 concentrations. A group of studies used 
the extinction coefficient, the inverse visual 
range multiplied by a constant, solely or 
jointly with PM2.5 and PM10 data based on 
its high correlation with PM2.5 concentrations 
(Ozkaynak et al. 1985; Paciorek et al. 2009; 
Yanosky et al. 2009). The good performance 

Figure 5. Scatter plots of predicted fine particulate matter (PM2.5) annual averages from the 31-year PM2.5 model using the extrapolated temporal trend based 
on PM2.5 data for 1999–2010 for 2000 versus long-term averages for 1980–2000 weighted by times of residence across home addresses of 5,086 participants who 
never moved during 1980–2000 and 2,466 Multi-Ethnic Study of Atherosclerosis (MESA)/MESA Air participants who moved at least once.
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we obtained when using the visibility trend 
in our model confirmed the usefulness of 
visibility data for predicting PM2.5. However, 
we observed slightly better model performance 
when using PM2.5 data than when using 
visibility data when validated on the national 
scale using IMPROVE data. We examined 
our models after adding meteorological 
measurements as spatio-temporal covariates 
and found worse model performance than 
with our preferred approach.

We evaluated our historical prediction 
model using four available external validation 
data sets; together, these covered 13 years 
of the 19-year period from 1980 to 1998 in 
much of the United States. Previous studies 
for historical PM2.5 prediction models either 
presented cross-validated results using data 
from before 1999 but no external validation 
data sets (Paciorek et al. 2009; Yanosky et al. 
2009, 2014), or they reported external valida-
tion results based on a limited data set for a 
short time period (Hogrefe et al. 2009; Lall 
et al. 2004; Ozkaynak et al. 1985; Yu and 
Wang 2010). Our model performed particu-
larly well when evaluated against IMPROVE 
and CHS data. One strength of using the 
IMPROVE data as a validation data set is that 
it is national. The IMPROVE data yielded the 
highest R2 values among all external validation 
data sets, possibly owing to its advantage of 
validating for the 1990–1998 time period, 
when the estimated trend was less uncertain.

We also observed consistently high R2s 
when validating against the data from CHS, 
which deployed monitoring sites in urban 
and residential areas. All CHS monitoring 
sites were in southern California and thus may 
not be generalizable across the United States. 
The CARB dichot data, which were also 
restricted to California locations, gave lower 
R2s, including values < 0.5 for some years. 
These low R2 estimates could have resulted 
from the lower between-site variability in 
California (vs. the entire United States) as well 
as the small number of sites, a few of which 
had poor predictions. Another possible reason 
for this poor performance is that the CARB 
dichot network used a different sampling 
protocol from that used by FRM. Our simpli-
fied data-driven calibration method may not 
have performed well when compared with an 
approach incorporating site-specific meteoro
logical conditions (Blanchard et al. 2011). 
Model performance may have also been 
affected by a set of CARB dichot sites in the 
highest PM2.5 concentration areas (Figure 4). 
The IPN data yielded the lowest R2s overall, 
possibly driven by the limited number of IPN 
sites and the inconsistency between the IPN 
and FRM sampling protocols. With 6 and 
12 sites for 1980 and 1981, respectively, a 
few sites with poor predictions had a large 
impact on the R2 estimates. Furthermore, the 

IPN years of 1980–1981 are the earliest years 
of our prediction period and may reflect the 
most uncertainty in trend estimation.

This study includes some limitations and 
implications for future research. We used 
time-constant geographic variables, which 
do not account for changes in spatial char-
acteristics over time. However, among the 
~300 geographic variables that we used for 
estimating PLS predictors were two sources 
of land use data: land cover data created in 
the 1970s and 1980s and satellite land use 
imaginary data generated in 2007. These two 
data sets represent spatial differences in land 
use in two different time periods separated by 
~30 years, and modeling the temporal trend 
with these covariates incorporated enabled us 
to capture changes in land use features over 
time in our model. In addition, a study in 
Vancouver, Canada, found that their model 
performance in predicting NO and NO2 in 
2003 was consistent with geographic variables 
collected between 2003 and 2010 (Wang 
et  al. 2013). Although this time period is 
only 7 years and therefore, is much shorter 
than our 31 years, these findings suggest that 
spatial patterns in urban areas with stable 
physical environments can be characterized 
by geographic variables from one of many 
time periods. Some previous studies have used 
aerosol optical depth (AOD) data to improve 
prediction models for PM2.5 (Beckerman 
et al. 2013; Hystad et al. 2012; Kloog et al. 
2011). These models used short-term or 
long-term averages of AOD. Future studies 
should investigate how to incorporate AOD 
measurements into spatio-temporal predic-
tion models for extended time periods and 
whether the addition of AOD improves the 
model’s performance.

As with application of any predicted 
exposure to health analyses, using predicted 
PM2.5 concentrations from our historical 
prediction model may affect the estimates in 
subsequent health analyses because of exposure 
measurement error. As others have shown, we 
note that the high R2 values we obtained do not 
guarantee the accuracy or proper coverage of 
health effect estimates owing to Berkson- and 
classical-like measurement error (Szpiro et al. 
2011a). Several simulation studies have shown 
that exposure models that perform well can 
still produce biased and/or imprecise health 
effect estimates (Alexeeff et al. 2015; Szpiro 
et al. 2011b). One possible explanation for 
this occurrence is that the monitor locations 
do not represent the study population loca-
tions, resulting in monitored exposures that are 
spatially incompatible with the population’s 
exposures (Szpiro and Paciorek 2013).

Our results suggest the importance 
of incorporating changes in air pollution 
concentrations in cohort studies. We showed 
that long-term PM2.5 prediction averages 

for 31 years that incorporated mobility were 
systematically higher than 2000 predictions 
among nonmovers and were nonsystemati-
cally different in movers. This pattern varied 
by city, as suggested by Figure S10, possibly 
depending on the extent of exposure contrast 
and on the population’s mobility between 
low- and high-exposure areas within a city. 
Using exposure predictions from a later 
period of follow-up in epidemiological study, 
as is commonly done (Beelen et  al. 2008; 
Cesaroni et al. 2013), may not adequately 
represent long-term exposures and might have 
an impact on health effect findings.

Conclusions
Our 31-year national PM2.5 prediction model 
can be widely applicable to epidemiological 
studies, particularly for assessing associations 
between long-term air pollution exposure and 
health outcomes in cohort studies. Although 
unavoidable uncertainty about the quality 
of predictions for the earliest time periods 
remains, the overall strong performance of 
our model assures that good PM2.5 estimates 
that are temporally well aligned with health 
data can be provided, including for health 
outcomes collected before extensive moni-
toring data exist. In addition, application of 
this point-wise prediction model will allow 
estimation of individual-level concentrations 
across historical addresses over time and thus 
will improve assessment of the impact of 
air pollution on the progression of disease 
conditions over an individual’s life-course. 
Our findings also suggest that long-term 
average PM2.5 estimates obtained from single 
addresses or from restricted time periods 
after health observation may not accurately 
represent long-term average estimates for 
some people and could have an impact on 
subsequent health analyses.
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